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Introduction

General

Visibility issues are a factor in a large number of general aviation accidents each year. Reduced
visibility from continued flight into instrument meteorological conditions (IMC) often results in
controlled flight into terrain (CFIT), or collision with ground-based obstructions and other aircraft. Poor
visibility also is a factor in runway incursions and ground-based accidents. Complex and high contrast
backgrounds also contribute to many mid-air collisions by reducing the visibility of other aircraft. Many
of these accidents occur in clear skies. Pilots often do not immediately recognize situations that may lead
to poor detection and otherwise unsafe visual conditions and therefore fail to take appropriate action.
This project has two main goals: 1) trying to better understand visual limitations under conditions of low
visibility and decreased detection, and 2) to teach pilots how to better detect other aircraft and to more
easily recognize unsafe visual conditions.

Background

Each year there are a large number of accidents in general aviation that result in controlled flight
into terrain (CFIT) or collision with other aircraft or land based obstructions such as radio towers
(Khatwa& Roelen,1996; O’Hare & Owen, 2002; Volpe, 1994). These accidents occur not only when
there is continued visual flight into instrument meteorological conditions (IMC), but often times in
conditions of clear weather (reviewed by Kraus, 1995; O’Hare & Owen, 2002). The problem of not
being able to visually acquire other aircraft and terrain has its roots in several important issues two of
which are considered here.

1) Learning to see the target- Visual detection is an active task rather than a passive one. Much of our
visual detection is based on “top-down” processing. That is how we see the world depends upon what
we have learned to see through experience. Just as when a pilot is learning how to communicate on the
radio, knowing what to expect to hear, in large part determines our ability to understand the radio
transmissions. Poor audio conditions, external noise, and abundant distractions contribute to the problem
of comprehending the transmissions. Efficient search and detection also requires that the observer know
what to look for, that is approximately where, when, and how it will appear. The solutions to these tasks
are easily calculated from known relationships. Training is required however for pilots to perform
quickly and automatically. The present study has produced a cockpit aid to traffic detection (described in
detail below) that should help many pilots improve traffic detection. We also describe an experimental
program that helps train pilots to recognize traffic target altitudes, direction of travel, and distance.

2 )Learning to judge the visual environment- There are three components to this issue a) the background,
b) intervening atmosphere and c) lighting especially “flat-light”.

The background against which targets must be detected varies from low contrast, uniform (e.g.
clear blue sky) to complex and high contrast (e.g. cityscapes and mottled mountainous terrain). In
general, detection is inversely related to scene complexity. In other words, the more complex and higher
contrast the background, the harder it is to detect a target on it. This is a phenomenon known as masking
in the vision science world.

There are various ways to characterize scene complexity and analyze the statistics of visual
scenes. One of these techniques involves Fourier analysis which breaks down an image into component
spatial frequencies and a subsequent plotting of the resultant spatial frequency amplitude and phase



spectra. Although it has been argued that most natural images show spatial frequency spectra that fall off
in amplitude as 1/f, there is ample evidence that the spectra of many scenes differ from 1/f significantly
(e.g. Field & Brady, 1997).

An alternative to Fourier analysis involves the application of sparse coding algorithms
(Simoncelli & Olshausen, 2001) to images from the aviation environment. This algorithm produces basis
functions which are believed to be generated in a similar manner to the receptive fields of visual cortical
neurons, that is, by learning from the statistics of the environment. Such an application provides insight
as to the limits of applying our land based visual system to the demands of the aerial environment. In the
present work we present data on the statistics of images from the aviation environment and compare
those with statistics from images of terrestrial scenes.

Detection models and performance

The sparse coding algorithms discussed above suggest a new model of detection based upon the
differences between the basis function weightings for a target and those of the local background.
Specifically, it would be predicted that the more different the weightings of basis functions for targets are
from those of the local background, the easier the target should be to detect. There are currently
numerous models that take into account local statistics such as contrast such as that proposed by
Ahumada (1996). In the present study we have collected detection data using backgrounds of images
from the aviation environment and compared model predictions from several versions of our new model
descried above and Ahumada’s model with the detection data.

Improvements in detection with the aid of lighting

External aircraft lighting, in particular strobe lights have been shown to greatly improve detection.
When lights in different areas are flashed out of sequence a percept of motion can arise. The
improvement of detection in this case arises by virtue of stimulation of a visual pathway specifically
tuned to transient changes such as flashes or motion. The strength of this motion percept depends greatly
upon parameters such as the timing of flashes and the distance by which they are separated. In this study
we present data on how these parameters contribute to the detection of targets on backgrounds of various
complexity.

Pilot education

We have developed a Powerpoint presentation with the goal of pilot education regarding visibility
and strategies for improving detection. It is our goal to present this talk at numerous aviation gatherings
to reach as many pilots as possible. In addition the presentation is annotated such that it can be available
for flight schools and other interested parties to make the presentation. This presentation is described in
more detail below and should become available through the FAA.

Results and Products

Simulator
We have completed construction of a flight simulator (PCATD) with extended visual display (see
figure 1). The flight simulator is approved for instrument instruction and basic flight instruction as



outlined by the Federal Aviation Regulations. This simulator is currently used in experiments of visual
detection and provides nearly 180 degrees of visual field of view. We plan to fully utilize the simulator’s
capabilities to answer questions regarding the influence of factors such as fatigue and inclement weather
on detection and pilot performance.

Figure 1. Flight simulator developed for visual detection and human factors experiments.

Figure 2 shows four views from one of the panels of the PCATD with a target aircraft at different
altitudes and distances. The subject’s task is to press a button on the yoke when the target is detected.



Figure 2. Images showing one panel of the PCATD during a detection experiment. Images on the top
show a Cessna at a far distance while the images in the bottom show closer aircraft. The target aircraft in
the left hand panels are below the horizon while those on the right are above the horizon.

Sparse coding of aerial images.

Intuitively, the aerial visual environment may appear to be quite different from the terrestrial
visual environment. When looking out of an aircraft for example, there is a wide view of the sky and
geographic features such as mountains. Objects on the ground appear tiny. However, there is a wide
variety of possible image characteristics in both aerial and terrestrial environments and it is unknown
how the characteristics of images from the aerial environment differ quantitatively from those of images
from the terrestrial environment. A quantitative knowledge of such differences may be useful for
understanding and modeling detection and visual performance for operations in novel visual
environments.

Here we use a sparse coding model (Olshausen & Field 1996, 1997) to characterizing both
terrestrial and aerial images. This approach has been shown to generate responses that are similar to those
observed in some cells of the primary visual cortex, providing a novel method to characterize natural
images in relation to the activities of the visual system. In particular, the spatial properties of receptive
fields in primary visual cortex have been characterized as localized, oriented, and bandpass, comparable
with basis functions derived from natural images (Olshausen & Field 1996, 1997). The properties of
these fields may arise from the strategy of producing a sparse distribution of neural activity in response to
these images. This suggests that sparse coding could characterize the properties of images in relation to
responses in the cortex.
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Although sparse coding models derived from terrestrial-based images predict the spatial
characteristics of receptive fields well, these analyses have been based on images sampled from the
terrestrial environment and have not yet been applied to the aerial environment. It may be of interest to
determine whether or not application of the same sparse code algorithm to images from the aerial
environment would result in derivation of similar spatial characteristics of receptive fields (basis
functions) as those derived from terrestrial images. Consideration of the complementary issue, that is,
whether or not basis functions derived from terrestrial images can be used to adequately describe images
from the aerial environment, should also provide insight into adaptation of visual systems to novels
environments. Differences in the relative amounts of each basis function required to encode the
information for both aerial and terrestrial images may provide insight as to the adaptive capabilities of
visual systems that utilize sparse-coding-like “learning” mechanisms.

Here we investigate whether characteristics of images in the aerial environment differ from those
of terrestrial-based images and how such differences might affect visibility. In the first analysis, we
compared the characteristics of images of aerial and terrestrial environments using the sparse coding
technique. In order to further characterize the adaptive response of the cortex to the aerial environment
we applied basis functions learned from terrestrial images to both terrestrial and aerial-based images, and
compared the weightings (coefficients) of the basis functions for these two classes of images.

Method

We applied a program which incorporates the sparse coding algorithm described by Olshausen
and Field (1996) to natural images of both terrestrial and aerial environment. The aerial images were
obtained from the cockpit of a Cessna 206 and were taken over a period of 18 months and in
approximately 12 states in the U.S. including Alaska. Images were taken with digital cameras.
Terrestrial images were taken over a period of 24 months mainly in Reno and the surroundings but also
in Japan and India.

Image model
The model starts with the basic assumption that an image, / ()?), can be represented in terms of a

linear superposition of basis functions ¢, (x), with amplitudes a,

(%)= a¢,(%) (1)

The image code is determined by the choice of basis functionsg,. The coefficients,q;, are dynamic

variables that change from one image to the next. They are computed for each image to satisfy the above
equality, and these quantities constitute the output of the code. The goal of efficient coding is to find a set
of ¢, that forms a complete code and results in the coefficient values being as statistically independent as

possible over an ensemble of natural images.

Olshausen and Field suggest that natural images have ‘sparse structure’ that is any given images
can be represented in terms of a small number of descriptors out of a large set. A specific form of low-
entropy code is sought in which the probability distribution of each coefficient’s activity is unimodal and
peaks around zero.

The search for a sparse code is formulated as an optimization problem by constructing the
following cost function to be minimized:
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E = -[preserveinformation] - A[sparseness of «, |

= Z{I(f)—zaiﬂ()}’)} +/12S(ai) 2

Where /4 is a positive constant that determines the importance of the second term relative to the first. The
first term measures how well the code describes the image. S(a,) is a nonlinear function (cost function).

Learning is accomplished by minimizing the total cost function, E. For each image presentation, E is
minimized with respect to the a,. The ¢ then evolve by a gradient descent on E averaged over image

presentations. The a are determined from the equilibrium solution to the differential equation:
a, = ¢,(F)r(3)-15'(a). (3)

Where 7(¥) is the residual image

r(f)=1(f)—2ai¢i(f) (4)

The first term of equation (3) takes a spatially weighted sum of the current residual image using the
function ¢, as the weights. The second term applies a non-linear self-inhibition on g,, according to the

derivative of S, that differently pushes activity towards zero.
The learning rule for updating ¢. is then:

Ag, (%) = nla, () (5)

Where 7 is the learning rate.
This algorithm seeks a set of basis functions ¢, for which a, can tolerate ‘sparsification’ with
minimum reconstruction error to find a set of ¢, that can best account for the structure in the images in

terms of a linear superposition of sparse statistically independent events. The basis set is overcomplete,
meaning that there are more basis functions than effective dimensions in images. Overcompleteness in
representation is important because it allows for the multidimensional space of position, orientation and
spatial-frequency to be tiled smoothly without artifacts. More generally though, it allows for a greater
degree of flexibility in the representation, as there is no reason to believe a priori that the number of
causes for images is less than or equal to the number of pixels.

Simulation methods
In one image-set, the data for the training process were taken from thirty 512 x 512 pixel images.
Training data were obtained by extracting 12 x 12 pixel image patches at random from images that were

preprocessed by filtering with the zero-phase whitening/low-pass filter R(f) = fe’(‘f'/-’i’)zt, fo = 205

cycles/picture. Whitening counteracts the fact that the mean-square error preferentially weights low
frequencies. Basically corrects for the vast differences in variance across spatial-frequencies due to the
1/f* power spectrum of natural images. This process simulates the filtering done by the retina and LGN
(Atick & Redlich, 1992), and also speeds the learning process.
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a;1s computed by first initializing to
a) =3 ¢,(X)(%) (6)

and then iterating equation (3) using the conjugate gradient method, halting after 10 iterations, or when
the change in E is less than1%.

The ¢ were initialized to random values and were updated every 100 image presentations
(patches). The vector length (gain) of each basis function, ¢, was adapted over time so as to maintain

equal variance on each coefficient. 50,000 updates were taken for a stable solution. The parameter 4 was
set so that /o = 0.14 with o” set to the variance of the images. The form of the sparseness cost function
was S(x) = log (1+x°).

The sparse coding process was run for 12 image-sets for the terrestrial and aerial environments,
respectively. Fig. 1 (a) shows examples of image-sets from each environment: (a-1) to (a-3), terrestrial;
(a-4) to (a-6), aerial. Each image-set consists of thirty images. We prepared image-sets including
different sceneries such as forest, mountain, desert, city, and the university campus for the terrestrial
environment. Aerial images included both forward and down views of various terrain, geographical
features, and structures.

Results
An example of a derived basis function set is shown in Fig.3 Coefficients for each of these
functions can describe any arbitrary image from the “learning” set of images.

HEENIIENS=ZEAREERENEE NS N
NEEUPSS INEENESRENSSSNE

HEEESESEFNESESEMNNE N A
BEEEISNNEEEEE RN NS E

il SN EREFEEENDESE
ElNVNNEESEEaSENEENENSEES
EENdNNEENEIrpEN=E8EVEN
EEENNAER N EEEEE SN NS .
HiEl=SEERNESNERNSENES N
B = N T NS N e DN G S

Figure 3. Set of basis functions “learned” from a set of aviation images (for example those from figure
4 (a4-a6). The relative weights (coefficients) of each of the basis functions can be used to describe any
particular scene.

Fig. 4 (b-1) to (b-6) show the outputs of basis functions from image-sets (a-1) to (a-6),
respectively. The basis functions from terrestrial images show clear Gabor function shapes (well
localized, oriented, and bandpass) which are consistent with Olshausen et al.’s results. Overall, the basis
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functions learned from aerial images are noisier than those from terrestrial images suggesting that the
characteristics of aerial images may differ from those of terrestrial scenes. Additionally, some aerial
image sets (e.g. Fig.4 b-4) did not converge on meaningful basis functions most probably due to a paucity
of high spatial frequency components (e.g. including only hazy images and clouds).

To analyze the characteristics of the derived basis functions, we computed the power spectra of
the functions to obtain their peak spatial frequency and orientation. For the position parameter we
computed the Hilbert transform and took the peak of the modulus of the quadrature pair. As shown Fig.
5, for example, the basis functions (b) learned from a terrestrial image-set (a) have different distributions
of orientation, position, and spatial frequency. The number of basis functions with a particular orientation
and spatial frequency were calculated and are shown in Fig. 6 (a). The orientation of each basis function
was rounded off to the nearest 10 degree step and binned into 10-degree-steps. The same procedure was
applied to spatial frequency using steps of 1 cycle/image (cycle/12 pixel). The derived basis functions are
well distributed especially for vertical (0 deg.) and horizontal orientations (90 or -90 deg.). In the case of
spatial frequency, the peak of the distribution is at 4 cycle/image.

Coefficients for 100 image patches in each basis functions were obtained as the output of the
sparse coding algorithm. One set of coefficients is shown in Fig. 6 (b). This figure illustrates the
sparseness in that not all basis functions are significantly active. To obtain the overall trend of excitation
for the image-set, we took a root mean square (rms) of 100 coefficients in each basis function as shown
in Fig. 6 (c). The rms of coefficients for 200 bases are re-plotted against orientation and frequency as
shown in Fig. 3 (d). Each point corresponds to the rms of each basis function. Their distributions show
the same trend as the distribution of the number of basis functions (a). This means that the basis functions
are well distributed but more active in the vertical and horizontal orientations. In the case of spatial
frequency, the points that have high coefficient values are rather scattered. Since many of the points in
(d) overlap each other, we took a sum of the rms in each orientation (10 deg. steps) and spatial frequency
(1 cycle/image-patch steps), respectively, as shown in Fig.6 (e). These data provide an indication of the
overall activity of the basis functions taking into account both the number and the value of the
coefficients. We calculated the output from all the image-sets in the same way and compared the
characteristics of the images. It should be noted, though, that the basis functions from 5 aerial image-sets
were eliminated because they did not converge to Gabor shapes and could not give meaningful power
spectra.

14
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Figure 5 (a) An image-set from a terrestrial environment (b) Basis functions from image-set (a). These
functions were used for the procedure in section 4.

The results of the analysis for all the image-sets (except for the 5 aerial image-sets that failed to
converge) are shown in Fig. 7. Fig 7 (a) and (b) show the results from12 terrestrial image-sets and those
from 7 aerial image-sets, respectively. For all the terrestrial image-sets, the distributions of orientation
have the same shape and clearly show more vertical and horizontal orientations (a). The distributions for
the aerial images have no clear peak in any specific orientation (b). The distributions of spatial frequency
also show clearer peaks for the terrestrial images than for the aerial images. Those for the aerial images
are rather flat. Fig. 7 (c) and (d) are the averages plotted with standard deviations. Overall, the standard
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deviations for the distributions of the terrestrial images are smaller than those of the aerial images. This
implies that there is more variation from one image set to another in the aerial environment and the aerial
image sets may be harder to characterize. The sums of coefficients are generally smaller for the aerial
image sets implying that those particular basis functions are less active. The distributions of position
information did not show systematic differences between the terrestrial and aerial environments and we
chose not to present those data here.
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Figure 6 (a) The number of basis functions against orientation (upper graph) and spatial frequency
(lower graph). H and V in upper graph stand for ‘Horizontal’ and ‘Vertical’, respectively. (b) An example
of coefficients. The coefficients of each basis functions for a patch from image-set (a). (c) Root mean
square (rms) of coefficients from 100 patches. (d) Rms of coefficients against orientation (upper) and
spatial frequency (lower). H and V in upper graph stand for ‘Horizontal’ and ‘Vertical’, respectively. (e)
Summed rms of coefficients against orientation (upper) and spatial frequency (lower).
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Terrestrial basis functions in the aerial environment.

In order to further characterize the simulated response of the cortex to the aerial environment, we
applied basis functions learned from terrestrial images to both terrestrial and aerial-based images, and
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compared the coefficients (weightings) of the basis functions for these two classes. We applied the basis
functions derived earlier and shown in Fig. 5 to all other image-sets from the terrestrial and aerial
environments. This was done in order to simulate how receptive fields in our visual cortex (derived from
learning in the terrestrial environment) might be activated in the aerial environment.
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Figure 8 Characteristics of response when same basis functions were applied.

(a) Results from 11 image-sets from terrestrial environment. (b) Results from 12 image-sets from aerial
environment. (c) Average of the summed rms of 11 image-sets from terrestrial environment. Error bars
indicate standard deviations. (d) Average of the summed rms of 12 image-sets from aerial environment.
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We used the same algorithm as described above except that the previously derived basis functions
were utilized throughout all the iterations. Thus the modified algorithm sought only the optimal
coefficients for those basis functions. It should be noted that to avoid circularity in this analysis, we did
not apply the basis functions to the original image set that was used to derive those functions.

The results for 11 image-sets from the terrestrial environment and 12 image-sets from the aerial
environment are shown in Fig. 8. We did not included the result of the image-set which was used to
derive these basis function because the purpose of this analysis was to examine how these basis functions
(receptive fields) learned from one type of environment respond when they are stimulated by new
environments. The activity (sum of coefficients) for all the terrestrial image-sets of show consistent
trends (a). Those of aerial images differ depending on the particular image-set (b). In most aerial image-
sets, the activity remains low. Greater activity is evidenced in three image-sets. It is of interest that these
particular image-sets include a number of down-looking views of cities, fields, and mountains (Fig. 4 (a-
4) for example) while the other image-sets showing low activity also included similar views. Further
analysis is therefore needed to explain the differences of activity. Fig. 8 (¢) and (d) show the average of
the summed coefficients for images from the terrestrial and aerial environments, respectively. The
averages of each environment are similar but the standard deviations are large for the coefficients from
the aerial environment. This illustrates larger variability or poorer fit of terrestrial functions to aerial
images. The results from analysis of aerial images suggest that our visual system, which is adapted to the
terrestrial environment, may not be optimized for the aerial environment.

Image-sets used here were arbitrarily selected from various sceneries; natural environments such
as mountains, forests, desert or city, and the university campus for the terrestrial environment, and
mountains, city, cloudy sky, etc for the aerial environment. Even though there is a large variety in the
content and composition of images in both environments, the resultant basis functions from the terrestrial
images showed similar characteristics to each other but those from the aerial environment had large
differences. This suggest that for sparse coding type “learning” in cortical receptive fields, the two
environments may not be equivalent and vision adapted to terrestrial environments may not be optimized
for the aerial environment. Whether or not this lack of optimization has significant or measurable visual
consequences needs to be determined. In addition, since the aerial environment differs enough from the
terrestrial environment to produce different basis functions and in some case does not present enough
structure to “learn” sufficiently to converge on an optimal basis set then it is likely that cortical fields
learned in such an environment would perform poorly for terrestrial image processing. Characterization
of cortical receptive fields that have developed in such altered and/or impoverished environments may
reveal such deficiencies.

Sparse coding models simulate many of the characteristics of cells in the visual cortex
successfully, when they utilize natural images from the terrestrial environment. It may be that sparse
coding does not work with aerial images in the same manner as with terrestrial images because our brains
have been developed and adapted within a terrestrial environment. If human developmental visual
mechanisms act like sparse coding processes, the “failure” of coding for a new, unfamiliar environment
may be predictable. However it should also be noted that with regard to causation, the failure of some
aerial image sets to produce reliable and consistent basis functions must rest with the nature and quantity
of the information inherent in these images; the learning is worse in the aerial environment than the
terrestrial environment because there is less information (structure).

Our results suggest that aerial images can be characterized by sparse coding model. However,
basis functions derived from sparse coding for aerial and terrestrial environments have different
characteristics. Basis functions from terrestrial images are consistent, while those from aerial images are
not. If cortical receptive fields in humans develop in a manner similar to sparse coding then the aerial
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environment may be relatively unusual or novel for our visual system, which is adapted to the terrestrial
environment. Future work should address whether or not this mismatch results in measurable visual
deficits and if rearing in altered environments produces altered receptive fields consistent with those
predicted from sparse coding algorithms.

Detection models and performance

As described above we developed several versions of a model of detection based upon the sparse
coding algorithm described above. We tested these models as well as a contrast masking model of
detection proposed by Ahumada and Beard (1997) against detection data collected in our lab. First we
will describe the detection models and then the experimental procedures.

Masking model (from Ahumada 1996)
(Single filter model with masking by a non-homogeneous background)

The following steps to create “visible contrast” images were applied to the images with and without a
target.

The input to the model consists of two images. The output is a perceptual distance d', representing the
number of just-noticeable-differences between the images. Each of the following steps is applied to both
images.

e Blur. The image I is convolved with a low pass Gaussian filter Fg (= ¢7™"?)

Blx,y] =I[x,y] * Fa[x,y].
e Local luminance. The blurred image B is convolved with a low pass Gaussian filter Fy,
L[X’y] = B[Xay] * FL[Xa}I]'
e Local contrast. The contrast image is computed from the local luminance,
Clx,y] =B[x,y]/L[x,y] - 1.
e L ocal contrast energy. Squared contrast image values are convolved with a Gaussian low pass filter
FE;
E[x.y] = Clx.y]" * Felx.y].
e Local contrast gain adjustment. The masked visible contrast image is computed using a divisive
inhibition formula,
VIx,y] = Clxy]/ (1+ge Blx,yD".
e Summation of image differences. The distance between the masked visibility images is based on a
Minkowski metric with an exponent of 4, corresponding to probability summation over space,

d'=gc (Zxy (Vilxy] - ValxyDH*>.

9

Some examples of the filtering procedure and resultant predictions are shown in figure 9. The last image
represents the probability of detection as a function of lightness. In this case the brighter the region is,
the more difficult target detection would be on that region.
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Figure 9. Examples of images filtered using the detection model of Ahumada (1996). The last image

represents the probability of detection as the inverse of brightness. See text for model details.
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Model from Sparse coding model

1. The basis functions were first calculated from terrestrial images. The sparse coding model starts with
the basic assumption that an image, / (f), can be represented in terms of a linear superposition of basis
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2. Coefficients of plane and background
The basis functions obtained above applied to plane target and background in all positions of a
background image. The a are determined from the equilibrium solution to the differential equation
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Sum ON(OFF)-sum

ON(OFF)-diff

Figure 10. Detection predictions for the 4 models that were tested. In this rendition darker regions
correspond to more difficult detection.

Methods.

% subjects were tested. An airplane-shaped target (0.5 deg) was shown on gray images (the
aviation environment) on CRT monitor randomly in one of 4 quadrants (see figure 11). Subjects
judged in which quadrant the target appeared. Detection and reaction time (RT) were measured using
either 180 random positions in 5 images and also using 19 fixed positions: each (at red dots shown on
the images in figure 12). The fixed regions were chosen to sample high, and low detection regions
and also levels at which the models made maximally different predictions.
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23 x 30 deg

Figure 11. Example of image used in detection task.

Figure 12. Images and fixed locations chosen for detection tasks
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Results

The results from the random positions are shown in figure 13 for 2 subjects. Performance
correlated well with predictions for all 5 subjects although there were also examples of large
discrepancies between each of the model predictions and the data.

The results from the fixed position tests are shown in figure 14 and 15. The detection and
reaction time results are shown in figure 14 while the results of a comparison of the models is shown in
figure 15. In this figure we plot the sum of the squared error of the model fits for 5 subjects. We found
that although the image analysis based on sparse coding was quite useful for quantifying the image
characteristics, the models developed using the algorithm did not provide significant advantage over the
mathematically simpler Ahumada and Beard model. The frequent departures from the model predictions
in general suggest that other variables not well described by the models need to be accounted for in an
improved model of detection.

In the future we plan to test the predictions of the models against behavioral detection results
obtained in a more realistic aviation setting include distractions and flying tasks provided by the flight

simulator.
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Figure 13. Plots of model predictions vs. detection data for the random position condition.
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Figure 15. Sum of squared error for fits of four different models of detection with actual detection data
for 5 different subjects. The masking model (Ahumada and Beard) appeared to better account for the
data.

Lighting effects on detection

Anti collision lights have long been improved for detection purposes and are most useful at night.
However their usefulness in terms of improving detection during the day in the context of background
masking has not been fully investigated. Part of the utility of using such lights is that when they are
abruptly modulated as with strobe lights they create strong stimulation of a highly sensitive visual
pathway that is specialized to detect transient changes and motion. This stimulation greatly improves the
detection of targets associated with the flashing lights. It has been suggested that apparent motion
created by the asynchronous flashing of lights near each other (phi motion) would provide additional
advantage for this pathway. The strength of phi motion is determined by the temporal and spatial
parameters of the flashing lights. Whether or not phi motion can improve detection beyond that already
provided by the transient flashing of the light over the spatial and temporal ranges of typical aircraft has
not been tested directly. We performed experiments to measure the effects of flashing and synchrony on
detection for simulated aviation targets.

Methods

Figure 16 shows the stimulus conditions including the masking background, the temporal profile
of the lights and the target configuration. The subjects’ task was choose which quadrant contained the
target. In the first experiment we looked at the effects of temporal frequency of the flashing on three
modes of lighting: 1) steady wherein both lights stayed on, 2) same, wherein the lights flashed in
synchrony, and flutter wherein the light flashed out of phase with each other.
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Figure 16. Stimulus conditions for the dual flicker experiments. The masking background is shown on

the left, the target ios shown on the upper right and the temporal profile for the three modes of lighting

are shown on the bottom right.

The results from the rate experiment are shown in figure 17. All subjects were most sensitive at about 4
Hz where thresholds are minimal. The steady condition shown as the open square was always the least

detectable but there was no apparent difference between the flutter and same modes.
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The results from an experiment which looked at the effects of strobe separation distance are
shown in Figure 18. Over the range of separations tested, which are reasonable for detection of aircraft,
show no appreciable effects other than from mode of lighting wherein again the steady condition was
inferior for detection.
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Figure 17. Detection thresholds plotted as a function of strobe light separation in degrees of visual
angle.

A third experiment looked at the effects of phase of the flashing lights as it was reasoned that
perhaps there was an optimal phase separation for asynchronous lights that produced the most salient phi
motion that was not captured in the 180 deg. shift of experiments 1 and 2. The results from this
experiment are shown in figure 18. Contrast thresholds were lowest (highest sensitivity) for the 5 Hz
stimuli with a 90 degree phase shift appearing optimal although the phase differences did not reach
statistical significance.
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As described above optimal visual detection requires prior knowledge of the visual target . We

have developed a simple reference card for use in the cockpit (see figure 1

9). This card illustrates the

apparent sizes of typical small airplanes (e.g. Cessna 172) and airliners (e.g. Airbus A-320) at different

distances from 2 miles to 2 mile. This card can be used by the pilot to esti
known but undetected target. Feedback on the use of this card has been qu
continue to provide it to pilots as requested.

mate the approximate size of a
ite positive and we will
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Aid for Judging the Apparent Size of Aircraft

Print this sheet, cut out the 3 X 5 reference card, and fold it in half on the dotted line.
Measure the calibration mark on the bottom and see if it measures one inch.

View the card from 18 inches if the line measures one inch. If not, mutiply the
standard viewing distance (18") by the length of the line. That should be your correct
viewing distance for the card (example: line length = 0.8 inches. 18 X 0.8 = 14.4

In this case your viewing distance would be 14.4 inches).

Know what to look for! |
| . . Front

Approximate appearance of an airliner
| and a small single engine aircraft

(view at a distance of 18") |
2 Miles 1 Mile 1/2 Mile

-« Fold Here

aircraft at various distances. This card can be used as a refer-
ence in the cockpit and to help pilots learn target size.

To view the card, hold it at a distance of 18 inches from the
eyes. The sizes of the images approximate those produced by
actual aircraft (a Cessna 172, and an Airbus 320). These air-
craft were chosen as examples of small aircraft and airliners.
Note that the actual appearance and visibility of real aircraft

will vary with color, weather, direction of travel, type of aircraft

and other factors.

Developed by Dr. Michael Crognale; Send any questions or comments regarding this aid

to: Dr. Crognale (mikro@unr.edu); or The Federal Aviation Administration, General Aviation and
Commercial Division; (AFS-800), Room 835, 800 Independence Avenue, S.W.,

Washington, DC 20591,Phone: 202-267-8212; or General Aviation Human Factors

I Program Manager (william.krebs@faa.gov).

Back

To quickly detect traffic, pilots should know the apparent size of I

I e —

e — e . e . . . . . ..

Cut Out /

1 inch
Calibration

Figure 19.Cockpit aid for aircraft target detection.

We have also developed a proof-of-concept interactive computer program to teach p[ilots how to
see better through prior knowledge. The program is based on traffic calls by ATC such as “Cessnna 1234
traffic 2:00 and 2 miles, southbound. Altitude indicates 5,500 ft.” The first part of the program
introduces the concept of visibility in the context of the aviation environment. The second part
introduces 4 problem areas:1) learning to see; 2) VFR fight into IMC; 3) background masking; and 4)
flat light. The third part will be interactive training in two main areas 1) learning to see other aircraft and
2) learning to evaluate the visual environment. The first part will cover judgments of distance, direction,
altitude, flight path and orientation. The second part will cover judgments of background masking
effects, atmospheric haze , VFR into IMC, and flat light recognition.

We have completed a preliminary version of the part of the program that trains pilots how to
judge the appearance and elevation of aircraft traffic given the distance, direction of flight, and altitude
from a simulated traffic call. The trainee is also given an altimeter readout and a directional gyro readout
in order to provide information to compute relative orientation and altitude. The trainee’s task is to pick
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the visual scenario that matches the traffic call, out of four possible scenarios that appear on the screen
simultaneously. The trainee is also provided feedback to improve learning. This program has initially
proven to be useful to improve detection through preliminary results. Future goals include a polished
easy to use program that could be distributed to pilots on CD or via download.

Other Products

FAA Handbook Chapter.

We have submitted a manuscript to the FAA describing light, the human visual system, and its
limits, and strategies for preflight planning for optimal visual detection, and strategies for seeing and
being seen.. Portions of this work were incorporated into the “General Aviation Pilot’s guide to preflight
weather planning, weather self-briefings, and weather decision making” compiled by Susan Parsons of
the FAA. The manuscript will be submitted in its entirety to an aviation Safety publication.

Powerpoint Educational Seminar.

An educational lecture in the form of a Powerpoint presentation has been developed to aid in the
educational goals. This presentation includes discussions of light phenomenon, the human visual system
and its limits, top-down processing, masking, adaptation, and strategies for optimizing visual
performance and for being seen. We have twice presented the educational seminar incorporating our
results at Oshkosh. Feedback from The attendees and the National Association for Flight Instructors was
quite positive and I have been invited to present again next year. We are also scheduled to present this
seminar at Sun n’Fun in Lakeland Florida in April of 2007. A copy of this presentation is included on
CD with this report.
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